
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 4 : Intermediate SQL

©Silberschatz, Korth and Sudarshan4.2Database System Concepts - 7th Edition

Chapter 4: Intermediate SQL

 Join Expressions

 Views

 Transactions

 Integrity Constraints

 SQL Data Types and Schemas

 Index Definition in SQL

 Authorization

©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 7th Edition

Problem?

Redundant Data!!!

©Silberschatz, Korth and Sudarshan4.4Database System Concepts - 7th Edition

Solution

Employee Table Department Table

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 7th Edition

Solution

Employee Table Department Table

Delete Redundant Data!

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 7th Edition

Solution
Add primary key (ID)

Employee Table
Department Table

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 7th Edition

Solution

Employee Table
Department Table

How to make a relationship
between two tables?

Foreign Key

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 7th Edition

Solution

Employee Table
Department Table

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

Solution

Employee Table
Department Table

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 7th Edition

10

Structured Query Language (SQL)

 Language for constructing a new table from argument table(s).

• FROM indicates source tables

• WHERE indicates which rows to retain

 It acts as a filter

• SELECT indicates which columns to extract from retained rows

 Projection

 The result is a table.

SELECT <attribute list>
FROM <table list >
WHERE <condition>

©Silberschatz, Korth and Sudarshan4.11Database System Concepts - 7th Edition

11

Example

SELECT Name
FROM Student
WHERE Id > 4999;

Id Name Address Status
1234 John 123 Main fresh
5522 Mary 77 Pine senior
9876 Bill 83 Oak junior

Student

Name
Mary
Bill

Result

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 7th Edition

12

Examples
SELECT Id, Name FROM Student;

SELECT Id, Name FROM Student
WHERE Status = 'senior';

SELECT * FROM Student
WHERE Status = 'senior‘;

SELECT COUNT(*) FROM Student
WHERE Status = 'senior';

result is a table
with one column

and one row

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

13

More Complex Example
 Goal: table in which each row names a senior and gives a course

taken and grade

 Combines information in two tables:

• Student: Id, Name, Address, Status

• Transcript: StudId, CrsCode, Semester, Grade

SELECT Name, CrsCode, Grade
FROM Student, Transcript
WHERE StudId = Id AND Status = 'senior';

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

14

Join

a1 a2 a3
A 1 xxy
B 17 rst

b1 b2
3.2 17
4.8 17

FROM T1, T2
yields:

a1 a2 a3 b1 b2
A 1 xxy 3.2 17
A 1 xxy 4.8 17
B 17 rst 3.2 17
B 17 rst 4.8 17

WHERE a2 = b2
yields:

B 17 rst 3.2 17
B 17 rst 4.8 17

SELECT a1, b1
yields result:

B 3.2
B 4.8

T1 T2

SELECT a1, b1
FROM T1, T2
WHERE a2 = b2

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

15

Modifying Tables

UPDATE Student
SET Status = 'soph'
WHERE Id = 111111111;

INSERT INTO Student (Id, Name, Address, Status)
VALUES (999999999, 'Bill', '432 Pine', 'senior')

DELETE FROM Student
WHERE Id = 111111111

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

Practice
Find the titles of courses in the Comp. Sci. department that have 3 credits.

select title
from course
where dept name = ’Comp. Sci.’
and credits = 3

Find the highest salary of any instructor.

select max(salary)
from instructor

Find all instructors earning the highest salary (there may be more than one
with the same salary).

select ID, name
from instructor
where salary = (select max(salary) from instructor)

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 7th Edition

Practice
write a query that finds departments whose names contain the string
“Sci” as a substring.

select dept_name
from department
where dept_name like ’%Sci%’

Find all instructors who do not work for Computer Science department.
(Assume that all people work for exactly one department).

select name
from instructor
where dept_name <> ’Comp. Sci.’

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 7th Edition

Practice

Modify the database so that Kim now teaches in Biology.
(Assume that each person has only one tuple in the instructor relation)

update instructor
set dept_name = ‘Biology’
where name = ‘Kim’

Increase the salary of each instructor in the Comp. Sci. department by 10%.
update instructor
set salary = salary * 1.10
where dept name = ’Comp. Sci.’

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 7th Edition

Joined Relations

 Join operations take two relations and return as a
result another relation.

 A join operation is a Cartesian product which requires
that tuples in the two relations match (under some
condition). It also specifies the attributes that are
present in the result of the join

 The join operations are typically used as subquery
expressions in the from clause

 Three types of joins:

• Natural join

• Inner join

• Outer join

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 7th Edition

Join

20

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

Semantics of JOINs

SELECT x1.a1, x1.a2, …, xn.ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions(x1,…, xn)

Answer = {}
for x1 in R1 do
for x2 in R2 do

…..
for xn in Rn do

if Conditions(x1,…, xn)
then Answer = Answer U {(x1.a1, x1.a2, …, xn.ak)}

return Answer

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 7th Edition

An example of SQL semantics

A

1

3

SELECT R.A
FROM R, S
WHERE R.A = S.B

A

3

3

B C

2 3

3 4

3 5

A B C

1 2 3

1 3 4

1 3 5

3 2 3

3 3 4

3 3 5

A B C

3 3 4

3 3 5

Cross
Product

Apply
Selections /
Conditions

Apply Projection

Output

R

S

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 7th Edition

Practice

23

MySQL supports the following types of joins:

Cross join
Inner join
Left join
Right join

MySQl Tutorial:
http://www.mysqltutorial.org/ https://en.wikipedia.org/wiki/Join_(SQL)

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 7th Edition

Example

col1 col2
1 11
2 22

col1 col3
10 101
2 202

T1 T2

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

Cross Join
Cartesian Product

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

Cross Join

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 7th Edition

Inner Join

27

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 7th Edition

Join Condition

 The on condition allows a general predicate over the relations
being joined.

 This predicate is written like a where clause predicate except for
the use of the keyword on.

 Query example

select *
from student join takes on student_ID = takes_ID

• The on condition above specifies that a tuple from student
matches a tuple from takes if their ID values are equal.

 Equivalent to:

select *
from student , takes
where student_ID = takes_ID

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 7th Edition

Inner join

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 7th Edition

Outer Join

 An extension of the join operation that avoids loss of
information.

 Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

 Uses null values.

 Three forms of outer join:

• left outer join

• right outer join

• full outer join

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 7th Edition

Left (outer) Join

31

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 7th Edition

Left Outer Join

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 7th Edition

Right(Outer) Join

33

©Silberschatz, Korth and Sudarshan4.34Database System Concepts - 7th Edition

Right Outer Join

©Silberschatz, Korth and Sudarshan4.35Database System Concepts - 7th Edition

Full Outer Join

©Silberschatz, Korth and Sudarshan4.36Database System Concepts - 7th Edition

Other Join

Equi-join:

An equi-join is a specific type of comparator-based join, that uses only
equality (=) comparisons in the join-predicate. Using other comparison
operators (such as <) disqualifies a join as an equi-join. The query shown
above has already provided an example of an equi-join:

SELECT *

FROM employee JOIN department

ON employee.DepartmentID = department.DepartmentID;

We can write equi-join as below:

SELECT *

FROM employee, department

WHERE employee.DepartmentID = department.DepartmentID;

©Silberschatz, Korth and Sudarshan4.37Database System Concepts - 7th Edition

Other Join

Natural join:

The natural join is a special case of equi-join. Natural join () is a binary
operator that is written as (R S) where R and S are relations.

The result of the natural join is the set of all combinations of tuples in R
and S that are equal on their common attribute names. For an
example consider the tables Employee and Dept and their natural join:

©Silberschatz, Korth and Sudarshan4.38Database System Concepts - 7th Edition

Subquery

 A sub query is a select query that is contained inside another query.
The inner select query is usually used to determine the results of the
outer select query.

Subqueries are embedded queries inside another query. The embedded query is known
as the inner query and the container query is known as the outer query.

©Silberschatz, Korth and Sudarshan4.39Database System Concepts - 7th Edition

Example

SELECT category_name
FROM categories
WHERE category_id = (SELECT MIN(category_id)

FROM movies);

movies = (movie_id, title, director, year_released, category_id)

The above is a form of Row Sub-Query. In such sub-queries the, inner query can give only
ONE result. The permissible operators when work with row subqueries are [=, >, =, <=, ,!=,]

©Silberschatz, Korth and Sudarshan4.40Database System Concepts - 7th Edition

Example

In this case, the inner query returns more than one results. The above is type of
Table sub-query.

SELECT full_names,contact_number
FROM members
WHERE membership_number IN (SELECT membership_number

FROM movierentals
WHERE return_date IS NULL);

©Silberschatz, Korth and Sudarshan4.41Database System Concepts - 7th Edition

Subqueries

• A subquery may occur in:
– A SELECT clause

– A FROM clause

– A WHERE clause

• Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

©Silberschatz, Korth and Sudarshan4.42Database System Concepts - 7th Edition

Correlated Nested Queries

Output a row <prof, dept> if prof has taught a course
in dept.

(SELECT T.ProfId --subquery
FROM Teaching T, Course C
WHERE T.CrsCode = C.CrsCode AND

C.DeptId = D.DeptId --correlation
)

SELECT P.Name, D.Name --outer query
FROM Professor P, Department D
WHERE P.Id IN -- set of all ProfId’s who have taught a course in D.DeptId

©Silberschatz, Korth and Sudarshan4.43Database System Concepts - 7th Edition

Correlated Nested Queries (con’t)

 Tuple variables T and C are local to subquery

 Tuple variables P and D are global to subquery

 Correlation: subquery uses a global variable, D

 Correlated queries can be expensive to evaluate

©Silberschatz, Korth and Sudarshan4.44Database System Concepts - 7th Edition

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

©Silberschatz, Korth and Sudarshan4.45Database System Concepts - 7th Edition

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

©Silberschatz, Korth and Sudarshan4.46Database System Concepts - 7th Edition

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?

We get a runtime error
(Some DBMS simply ignore the extra values)

©Silberschatz, Korth and Sudarshan4.47Database System Concepts - 7th Edition

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

“correlated
subquery”

What happens if the subquery returns more than one city?

We get a runtime error
(Some DBMS simply ignore the extra values)

©Silberschatz, Korth and Sudarshan4.48Database System Concepts - 7th Edition

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

“correlated
subquery”

What happens if the subquery returns more than one city?

We get a runtime error
(Some DBMS simply ignore the extra values)

©Silberschatz, Korth and Sudarshan4.49Database System Concepts - 7th Edition

1. Subqueries in SELECT

Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.50Database System Concepts - 7th Edition

1. Subqueries in SELECT

Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

We have
“unnested”
the query

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.51Database System Concepts - 7th Edition

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.52Database System Concepts - 7th Edition

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest by using
a GROUP BY

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.53Database System Concepts - 7th Edition

1. Subqueries in SELECT

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.54Database System Concepts - 7th Edition

1. Subqueries in SELECT

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.55Database System Concepts - 7th Edition

2. Subqueries in FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

Unnest this query !
SELECT pname FROM Product
WHERE price > 20 and price < 500

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.56Database System Concepts - 7th Edition

3. Subqueries in WHERE

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.57Database System Concepts - 7th Edition

3. Subqueries in WHERE

Find all companies that make some products with price < 200

Existential quantifiers
Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.58Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

 Find all companies that make some products with price < 200

 Existential quantifiers

 Using IN

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.59Database System Concepts - 7th Edition

SQL EXISTS Operator

 The EXISTS operator is used to test for the existence of any
record in a subquery.

 The EXISTS operator returns true if the subquery returns one or
more records.

 Exists Syntax:

SELECT column_name(s)
FROM table_name
WHERE EXISTS (SELECT column_name

FROM table_name

WHERE condition);

©Silberschatz, Korth and Sudarshan4.60Database System Concepts - 7th Edition

Example 1

ProductID ProductName SupplierID Price

1 Chais 1 18

2 Chang 1 21

3 Syrup 1 10

4 Seasoning 2 22

5 Gumbo 2 19

SupplierID SupplierName ContactName City

1 Exotic Liquid Charlotte Cooper LA

2 Cajun Delights Shelley Burke NY

3 Homestead Regina Murphy SF

SELECT DISTINCT SupplierName
FROM Suppliers AS S
WHERE EXISTS (SELECT ProductName

FROM Products AS P
WHERE P.SupplierID = S.SupplierID
AND Price < 20);

This SQL statement returns TRUE and lists the suppliers with a product price less than 20

©Silberschatz, Korth and Sudarshan4.61Database System Concepts - 7th Edition

Example 2

ProductID ProductName SupplierID Price

1 Chais 1 18

2 Chang 1 21

3 Syrup 1 10

4 Seasoning 2 22

5 Gumbo 2 19

SupplierID SupplierName ContactName City

1 Exotic Liquid Charlotte Cooper LA

2 Cajun Delights Shelley Burke NY

3 Homestead Regina Murphy SF

SELECT DISTINCT SupplierName
FROM Suppliers AS S
WHERE EXISTS (SELECT ProductName

FROM Products AS P
WHERE P.SupplierID = S.SupplierID
AND Price = 22);

This SQL statement returns TRUE and lists the suppliers with a product price equal to 22

©Silberschatz, Korth and Sudarshan4.62Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

 Find all companies that make some products with price < 200

 Existential quantifiers

 Using EXISTS:

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.63Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

 Find all companies that make some products with price < 200

 Existential quantifiers

 Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.64Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

 Find all companies that make some products with price < 200

 Existential quantifiers

 Using ANY:

Product (pname, price, cid)
Company(cid, cname, city)

Not supported
in MySQL

©Silberschatz, Korth and Sudarshan4.65Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

 Find all companies that make some products with price < 200

 Existential quantifiers

 Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.66Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy!

 Find all companies that make some products with price < 200

 Existential quantifiers

 Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

©Silberschatz, Korth and Sudarshan4.67Database System Concepts - 7th Edition

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

same as:

Find all companies that make only products with price < 200

©Silberschatz, Korth and Sudarshan4.68Database System Concepts - 7th Edition

3. Subqueries in WHERE

Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

same as:

Find all companies that make only products with price < 200

©Silberschatz, Korth and Sudarshan4.69Database System Concepts - 7th Edition

3. Subqueries in WHERE

Universal quantifiers are hard!

Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

same as:

Find all companies that make only products with price < 200

©Silberschatz, Korth and Sudarshan4.70Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product 200

©Silberschatz, Korth and Sudarshan4.71Database System Concepts - 7th Edition

3. Subqueries in WHERE

2. Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

©Silberschatz, Korth and Sudarshan4.72Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

Universal quantifiers

Using EXISTS:

©Silberschatz, Korth and Sudarshan4.73Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

Universal quantifiers

Using ALL:

©Silberschatz, Korth and Sudarshan4.74Database System Concepts - 7th Edition

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

Universal quantifiers

Using ALL:

Not supported
in MySQL

©Silberschatz, Korth and Sudarshan4.75Database System Concepts - 7th Edition

Constraints on a Single Relation

 not null

 Default value

 unique

 check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan4.76Database System Concepts - 7th Edition

Not Null Constraints

 not null

• Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

©Silberschatz, Korth and Sudarshan4.77Database System Concepts - 7th Edition

77

Default Value

-Value to be assigned if attribute value in a row is not specified

CREATE TABLE Student (
Id INTEGER,
Name CHAR(20) NOT NULL,
Address CHAR(50),
Status CHAR(10) DEFAULT ‘freshman’,
PRIMARY KEY (Id))

©Silberschatz, Korth and Sudarshan4.78Database System Concepts - 7th Edition

Unique Constraints

 unique (A1, A2, …, Am)

• The unique specification states that the attributes
A1, A2, …, Am form a candidate key.

• Candidate keys are permitted to be null (in contrast
to primary keys).

©Silberschatz, Korth and Sudarshan4.79Database System Concepts - 7th Edition

The check clause

 The check (P) clause specifies a predicate P that must be
satisfied by every tuple in a relation.

 Example: ensure that semester is one of fall, winter, spring or
summer

create table section
(course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

©Silberschatz, Korth and Sudarshan4.80Database System Concepts - 7th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a given set
of attributes also appears for a certain set of attributes in
another relation.

• Example: If “Biology” is a department name appearing in
one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
in R these values also appear in S.

©Silberschatz, Korth and Sudarshan4.81Database System Concepts - 7th Edition

Referential Integrity (Cont.)

 Foreign keys can be specified as part of the SQL create
table statement

foreign key (dept_name) references department

 By default, a foreign key references the primary-key
attributes of the referenced table.

 SQL allows a list of attributes of the referenced relation to
be specified explicitly.

foreign key (dept_name) references department
(dept_name)

©Silberschatz, Korth and Sudarshan4.82Database System Concepts - 7th Edition

Cascading Actions in Referential Integrity

 When a referential-integrity constraint is violated, the normal
procedure is to reject the action that caused the violation.

 An alternative, in case of delete or update is to cascade

create table course (
(…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade
on update cascade,

. . .)

 Instead of cascade we can use :

• set null,

• set default

©Silberschatz, Korth and Sudarshan4.83Database System Concepts - 7th Edition

Integrity Constraint Violation During Transactions

 Consider:

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,
foreign key mother references person)

 How to insert a tuple without causing constraint violation?

• Insert father and mother of a person before inserting person

• OR, set father and mother to null initially, update after inserting
all persons (not possible if father and mother attributes
declared to be not null)

• OR defer constraint checking

©Silberschatz, Korth and Sudarshan4.84Database System Concepts - 7th Edition

Assertions

 An assertion is a predicate expressing a condition that we
wish the database always to satisfy.

 Element of schema (like table)

 Applies to entire database (not just the individual rows of a single
table)

• hence it works even if Employee is empty

 The following constraints, can be expressed using assertions:

 For each tuple in the student relation, the value of the attribute
tot_cred must equal the sum of credits of courses that the
student has completed successfully.

 An instructor cannot teach in two different classrooms in a
semester in the same time slot

 An assertion in SQL takes the form:

create assertion <assertion-name> check (<predicate>);

©Silberschatz, Korth and Sudarshan4.85Database System Concepts - 7th Edition

Assertion Example

CREATE ASSERTION DontFireEveryone
CHECK (0 < SELECT COUNT (*) FROM Employee)

©Silberschatz, Korth and Sudarshan4.86Database System Concepts - 7th Edition

Sample

Id MgrId EmpName Salary StartDate

1111 3333 Kathy 50K 2012

2222 3333 John 60K 2011

3333 0000 Cook 100K 2000

4444 0000 Mathew 75K 2012

5555 1111 Jun 40K 2015

Primary Key（ID),
FOREIGN KEY（MgrId) References Employee(Id)

Employee

Query: Find the employee(s) who their salaries are higher than their
managers

©Silberschatz, Korth and Sudarshan4.87Database System Concepts - 7th Edition

SELECT E1.Id, E1.MgrId, E1.EmpName, E1.salary, E2.salary as Manager_Salary
FROM employee as E1
inner join employee as E2
On E1.MgrId = E2.Id
where E1.salary > E2.salary

©Silberschatz, Korth and Sudarshan4.88Database System Concepts - 7th Edition

Assertion

CREATE ASSERTION KeepEmployeeSalariesDown
CHECK (NOT EXISTS(

SELECT * FROM Employee E
WHERE E.Salary > E.MngrSalary))

EXISTS(R) is a boolean function (called predicate)
• Returns true when R it not empty
• Return false otherwise

NOT EXISTS(R) ≡ isEmpty(R) ≡ (R = Φ)

©Silberschatz, Korth and Sudarshan4.89Database System Concepts - 7th Edition

Assertions and Inclusion Dependency

CREATE ASSERTION NoEmptyCourses
CHECK (NOT EXISTS (

SELECT * FROM Teaching T
WHERE T.roster() = Φ)

)

Idea: search those courses in Teaching such that they have no registered students.

But how to write T.roster() = Φ in SQL?

©Silberschatz, Korth and Sudarshan4.90Database System Concepts - 7th Edition

Assertions and Inclusion Dependency

CREATE ASSERTION NoEmptyCourses
CHECK (NOT EXISTS (

SELECT * FROM Teaching T
WHERE -- for each row T check the following condition
NOT EXISTS (
SELECT * FROM Transcript R

WHERE R.CrsCode = T.CrsCode
AND R.Semester = T.Semester)

))

Idea: search those courses in Teaching such that they have no registered students.

©Silberschatz, Korth and Sudarshan4.91Database System Concepts - 7th Edition

User-Defined Types

 create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

 Example:

create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

©Silberschatz, Korth and Sudarshan4.92Database System Concepts - 7th Edition

Domains

 create domain construct in SQL-92 creates user-defined
domain types

create domain person_name char(20) not null

 Types and domains are similar. Domains can have
constraints, such as not null, specified on them.

 Example:

create domain degree_level varchar(10)
constraint degree_level_test

check (value in ('Bachelors', 'Masters', 'Doctorate'));

©Silberschatz, Korth and Sudarshan4.93Database System Concepts - 7th Edition

MySQL: Enumeration Values

 Syntax: ENUM

 https://www.mysqltutorial.org/mysql-enum/

©Silberschatz, Korth and Sudarshan4.94Database System Concepts - 7th Edition

Index Creation

 Many queries reference only a small proportion of the records
in a table.

 It is inefficient for the system to read every record to find a
record with particular value

 An index on an attribute of a relation is a data structure that
allows the database system to find those tuples in the relation
that have a specified value for that attribute efficiently, without
scanning through all the tuples of the relation.

 We create an index with the create index command

create index <name> on <relation-name> (attribute);

©Silberschatz, Korth and Sudarshan4.95Database System Concepts - 7th Edition

Index Creation Example

 create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

 create index studentID_index on student(ID)

 The query:

select *
from student
where ID = '12345'

can be executed by using the index to find the required
record, without looking at all records of student

©Silberschatz, Korth and Sudarshan4.96Database System Concepts - 7th Edition

Authorization

 We may assign a user several forms of authorizations on
parts of the database.

• Read - allows reading, but not modification of data.

• Insert - allows insertion of new data, but not
modification of existing data.

• Update - allows modification, but not deletion of data.

• Delete - allows deletion of data.

 Each of these types of authorizations is called a privilege.
We may authorize the user all, none, or a combination of
these types of privileges on specified parts of a database,
such as a relation or a view.

©Silberschatz, Korth and Sudarshan4.97Database System Concepts - 7th Edition

Authorization (Cont.)

 Forms of authorization to modify the database schema

• Index - allows creation and deletion of indices.

• Resources - allows creation of new relations.

• Alteration - allows addition or deletion of attributes in a
relation.

• Drop - allows deletion of relations.

©Silberschatz, Korth and Sudarshan4.98Database System Concepts - 7th Edition

Authorization Specification in SQL

 The grant statement is used to confer authorization

grant <privilege list> on <relation or view > to <user list>

 <user list> is:

• a user-id

• public, which allows all valid users the privilege
granted

• A role (more on this later)

 Example:

• grant select on department to Amit, Satoshi

 Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

 The grantor of the privilege must already hold the privilege
on the specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan4.99Database System Concepts - 7th Edition

Privileges in SQL

 select: allows read access to relation, or the ability to
query using the view

• Example: grant users U1, U2, and U3 select
authorization on the instructor relation:

grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update
statement

 delete: the ability to delete tuples.

 all privileges: used as a short form for all the allowable
privileges

©Silberschatz, Korth and Sudarshan4.100Database System Concepts - 7th Edition

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user
list>

 Example:

revoke select on student from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the
revokee may hold.

 If <revokee-list> includes public, all users lose the
privilege except those granted it explicitly.

 If the same privilege was granted twice to the same user
by different grantees, the user may retain the privilege
after the revocation.

 All privileges that depend on the privilege being revoked
are also revoked.

©Silberschatz, Korth and Sudarshan4.101Database System Concepts - 7th Edition

Roles

 A role is a way to distinguish among various users as far
as what these users can access/update in the database.

 To create a role we use:

create a role <name>

 Example:

• create role instructor

 Once a role is created we can assign “users” to the role
using:

• grant <role> to <users>

©Silberschatz, Korth and Sudarshan4.102Database System Concepts - 7th Edition

Roles Example

 create role instructor;

 grant instructor to Amit;

 Privileges can be granted to roles:

• grant select on takes to instructor;

 Roles can be granted to users, as well as to other roles

• create role teaching_assistant

• grant teaching_assistant to instructor;

 Instructor inherits all privileges of teaching_assistant

 Chain of roles

• create role dean;

• grant instructor to dean;

• grant dean to Satoshi;

©Silberschatz, Korth and Sudarshan4.103Database System Concepts - 7th Edition

View

 In SQL, a view is a virtual table based on the result-set of
an SQL statement.

 A view contains rows and columns, just like a real table.
The fields in a view are fields from one or more real tables
in the database.

 A view is defined using the create view statement which
has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.
The view name is represented by v.

©Silberschatz, Korth and Sudarshan4.104Database System Concepts - 7th Edition

View

 Once a view is defined, the view name can be used to refer
to the virtual relation that the view generates.

 View definition is not the same as creating a new relation
by evaluating the query expression

• Rather, a view definition causes the saving of an
expression; the expression is substituted into queries
using the view.

©Silberschatz, Korth and Sudarshan4.105Database System Concepts - 7th Edition

View Definition and Use
 A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

 Find all instructors in the Biology department

select name
from faculty
where dept_name = 'Biology’

 Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan4.106Database System Concepts - 7th Edition

106

View - Substitution

SELECT S.Name, C.Cum
FROM (SELECT T.StudId, AVG (T.Grade)

FROM Transcript T

GROUP BY T.StudId) C, Student S
WHERE C.StudId = S.StudId AND C.Cum > 3.5

When used in an SQL statement, the view definition is
substituted for the view name in the statement. As SELECT
statement nested in FROM clause

©Silberschatz, Korth and Sudarshan4.107Database System Concepts - 7th Edition

107

View Benefits

 Access Control: Users not granted access to base tables.
Instead they are granted access to the view of the database
appropriate to their needs.

• External schema is composed of views.

• View allows owner to provide SELECT access to a subset of
columns (analogous to providing UPDATE and INSERT
access to a subset of columns)

©Silberschatz, Korth and Sudarshan4.108Database System Concepts - 7th Edition

108

Views – Limiting Visibility

CREATE VIEW PartOfTranscript (StudId, CrsCode, Semester) AS
SELECT T. StudId, T.CrsCode, T.Semester -- limit columns
FROM Transcript T
WHERE T.Semester = ‘S2000’ -- limit rows

Give permissions to access data through view:

GRANT SELECT ON PartOfTranscript TO joe

This would have been analogous to:

GRANT SELECT (StudId,CrsCode,Semester)
ON Transcript TO joe

Grade projected out

©Silberschatz, Korth and Sudarshan4.109Database System Concepts - 7th Edition

109

View Benefits (cont’d)

 Customization: Users need not see full complexity of
database.

 View creates the illusion of a simpler database
customized to the needs of a particular category of
users

 A view is similar in many ways to a subroutine in
standard programming
• Can be reused in multiple queries

©Silberschatz, Korth and Sudarshan4.110Database System Concepts - 7th Edition

Views Defined Using Other Views

 create view physics_fall_2017 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017';

 create view physics_fall_2017_watson as
select course_id, room_number
from physics_fall_2017
where building= 'Watson';

©Silberschatz, Korth and Sudarshan4.111Database System Concepts - 7th Edition

Materialized Views

 Certain database systems allow view relations to be
physically stored.

• Physical copy created when the view is defined.

• Such views are called Materialized view:

 If relations used in the query are updated, the materialized
view result becomes out of date

• Need to maintain the view, by updating the view
whenever the underlying relations are updated.

©Silberschatz, Korth and Sudarshan4.112Database System Concepts - 7th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

insert into faculty

values ('30765', 'Green', 'Music');

 This insertion must be represented by the insertion into the
instructor relation

• Must have a value for salary.

 Two approaches

• Reject the insert

• Inset the tuple

('30765', 'Green', 'Music', null)

into the instructor relation

create view faculty as
select ID, name, dept_name
from instructor

©Silberschatz, Korth and Sudarshan4.113Database System Concepts - 7th Edition

Some Updates Cannot be Translated Uniquely

 create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

 insert into instructor_info

values ('69987', 'White', 'Taylor');

 Issues

• Which department, if multiple departments in Taylor?

• What if no department is in Taylor?

©Silberschatz, Korth and Sudarshan4.114Database System Concepts - 7th Edition

And Some Not at All

 create view history_instructors as
select *
from instructor
where dept_name= 'History';

 What happens if we insert

('25566', 'Brown', 'Biology', 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan4.115Database System Concepts - 7th Edition

View Updates in SQL

 Most SQL implementations allow updates only on simple
views

• The from clause has only one database relation.

• The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates,
or distinct specification.

• Any attribute not listed in the select clause can be set to
null

• The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.116Database System Concepts - 7th Edition

Authorization on Views

 create view geo_instructor as
(select *
from instructor
where dept_name = 'Geology’);

 grant select on geo_instructor to geo_staff

©Silberschatz, Korth and Sudarshan4.117Database System Concepts - 7th Edition

End of Chapter 4

